Advertisement

Congenital Adrenal Hyperplasia

  • Selma Feldman Witchel
    Correspondence
    Address correspondence to: Selma Feldman Witchel, MD, Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Ave, Pittsburgh, PA 15224; Phone: (412) 692-5170
    Affiliations
    Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
    Search for articles by this author
Published:April 24, 2017DOI:https://doi.org/10.1016/j.jpag.2017.04.001

      Abstract

      The congenital adrenal hyperplasias comprise a family of autosomal recessive disorders that disrupt adrenal steroidogenesis. The most common form is due to 21-hydroxylase deficiency associated with mutations in the 21-hydroxylase gene, which is located at chromosome 6p21. The clinical features associated with each disorder of adrenal steroidogenesis represent a clinical spectrum that reflect the consequences of the specific mutations. Treatment goals include normal linear growth velocity and “on-time” puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and preservation of fertility. For adolescent and adult men, prevention and early treatment of testicular adrenal rest tumors is beneficial. In this article key aspects regarding pathophysiology, diagnosis, and treatment of congenital adrenal hyperplasia are reviewed.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Pediatric and Adolescent Gynecology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Delle Piane L.
        • Rinaudo P.F.
        • Miller W.L.
        150 Years of congenital adrenal hyperplasia: translation and commentary of De Crecchio’s classic paper from 1865.
        Endocrinology. 2015; 156: 1210
        • Decourt M.J.
        • Jayle M.F.
        • Baulieu E.
        Virilisme cliniquement tardif avec excretion de pregnanetriol et insuffisance de la production du cortisol.
        Ann Endocrinol (Paris). 1957; 18 ([in French]): 416
        • Thil’en A.
        • Nordenström A.
        • Hagenfeldt L.
        • et al.
        Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden.
        Pediatrics. 1998; 101: E11
        • Wilson R.C.
        • Nimkarn S.
        • Dumic M.
        • et al.
        Ethnic-specific distribution of mutations in 716 patients with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency.
        Mol Genet Metab. 2007; 9: 414
        • Therrell Jr., B.L.
        • Berenbaum S.A.
        • Manter-Kapanke V.
        • et al.
        Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia.
        Pediatrics. 1998; 101: 583
        • Pearce M.
        • DeMartino L.
        • McMahon R.
        • et al.
        Newborn screening for congenital adrenal hyperplasia in New York State.
        Mol Genet Metab Rep. 2016; 7: 1
        • Speiser P.W.
        • Dupont B.
        • Rubinstein P.
        • et al.
        High frequency of nonclassical steroid 21-hydroxylase deficiency.
        Am J Hum Genet. 1985; 37: 650
        • Bruque C.D.
        • Delea M.
        • Fernández C.S.
        • et al.
        Structure-based activity prediction of CYP21A2 stability variants: a survey of available gene variations.
        Sci Rep. 2016; 6: 39082
        • Higashi Y.
        • Tanae A.
        • Inoue H.
        • et al.
        Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: implications for steroid 21-hydroxylase deficiency.
        Am J Hum Genet. 1988; 42: 17
        • Parajes S.
        • Quinteiro C.
        • Domínguez F.
        • et al.
        High frequency of copy number variations and sequence variants at CYP21A2 locus: implication for the genetic diagnosis of 21-hydroxylase deficiency.
        PLoS One. 2008; 3: e2138
        • Chen W.
        • Xu Z.
        • Sullivan A.
        • et al.
        Junction site analysis of chimeric CYP21A1P/CYP21A2 genes in 21-hydroxylase deficiency.
        Clin Chem. 2012; 58: 421
        • Parker E.A.
        • Hovanes K.
        • Germak J.
        • et al.
        Maternal 21-hydroxylase deficiency and uniparental isodisomy of chromosome 6 and X results in a child with 21-hydroxylase deficiency and Klinefelter syndrome.
        Am J Med Genet A. 2006; 140: 2236
        • Livadas S.
        • Dracopoulou M.
        • Dastamani A.
        • et al.
        The spectrum of clinical, hormonal and molecular findings in 280 individuals with nonclassical congenital adrenal hyperplasia caused by mutations of the CYP21A2 gene.
        Clin Endocrinol (Oxf). 2015; 82: 543
        • Speiser P.W.
        • Knochenhauer E.S.
        • Dewailly D.
        • et al.
        A multicenter study of women with nonclassical congenital adrenal hyperplasia: relationship between genotype and phenotype.
        Mol Genet Metab. 2000; 71: 527
        • Bidet M.
        • Bellanné-Chantelot C.
        • Galand-Portier M.B.
        • et al.
        Clinical and molecular characterization of a cohort of 161 unrelated women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency and 330 family members.
        J Clin Endocrinol Metab. 2009; 94: 1570
        • Barbaro M.
        • Soardi F.C.
        • Östberg L.J.
        • et al.
        In vitro functional studies of rare CYP21A2 mutations and establishment of an activity gradient for nonclassic mutations improve phenotype predictions in congenital adrenal hyperplasia.
        Clin Endocrinol (Oxf). 2015; 82: 37
        • Miller W.L.
        Steroid hormone synthesis in mitochondria.
        Mol Cell Endocrinol. 2013; 379: 62
        • Arlt W.
        • Allolio B.
        Adrenal insufficiency.
        Lancet. 2003; 361: 1881
        • White P.C.
        • Bachega T.A.
        Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: from birth to adulthood.
        Semin Reprod Med. 2012; 30: 400
        • Mooij C.F.
        • Parajes S.
        • Pijnenburg-Kleizen K.J.
        • et al.
        Influence of 17-hydroxyprogesterone, progesterone and sex steroids on mineralocorticoid receptor transactivation in congenital adrenal hyperplasia.
        Horm Res Paediatr. 2015; 83: 414
        • Merke D.P.
        • Chrousos G.P.
        • Eisenhofer G.
        • et al.
        Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency.
        N Engl J Med. 2000; 343: 1362
        • Wilson J.D.
        • Auchus R.J.
        • Leihy M.W.
        • et al.
        5alpha-androstane-3alpha,17beta-diol is formed in tammar wallaby pouch young testes by a pathway involving 5alpha-pregnane-3alpha,17alpha-diol-20-one as a key intermediate.
        Endocrinology. 2003; 144: 575
        • Kamrath C.
        • Hochberg Z.
        • Hartmann M.F.
        • et al.
        Increased activation of the alternative “backdoor” pathway in patients with 21-hydroxylase deficiency: evidence from urinary steroid hormone analysis.
        J Clin Endocrinol Metab. 2012; 97: E367
        • Auchus R.J.
        The backdoor pathway to dihydrotestosterone.
        Trends Endocrinol Metab. 2004; 15: 432
        • Kamrath C.
        • Hartmann M.F.
        • Wudy S.A.
        Androgen synthesis in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        Horm Metab Res. 2013; 45: 86
        • Turcu A.F.
        • Rege J.
        • Chomic R.
        • et al.
        Profiles of 21-carbon steroids in 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 2015; 100: 2283
        • Turcu A.F.
        • Nanba A.T.
        • Chomic R.
        • et al.
        Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency.
        Eur J Endocrinol. 2016; 174: 601
        • Storbeck K.H.
        • Bloem L.M.
        • Africander D.
        • et al.
        11β-Hydroxy-dihydrotestosterone and 11-ketodihydrotestosterone, novel C19 steroids with androgenic activity: a putative role in castration resistant prostate cancer?.
        Mol Cell Endocrinol. 2013; 377: 135
        • Lindert J.
        • Hiort O.
        • Tüshaus L.
        • et al.
        Perineal ultrasound offers useful information in girls with congenital adrenal hyperplasia.
        J Pediatr Urol. 2016; 12: 427.e1
        • Moran C.
        • Azziz R.
        • Carmina E.
        • et al.
        21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study.
        Am J Obstet Gynecol. 2000; 183: 1468
        • Binay C.
        • Simsek E.
        • Cilingir O.
        • et al.
        Prevalence of nonclassic congenital adrenal hyperplasia in Turkish children presenting with premature pubarche, hirsutism, or oligomenorrhoea.
        Int J Endocrinol. 2014; 2014: 768506
        • Armengaud J.B.
        • Charkaluk M.L.
        • Trivin C.
        • et al.
        Precocious pubarche: distinguishing late-onset congenital adrenal hyperplasia from premature adrenarche.
        J Clin Endocrinol Metab. 2009; 94: 2835
        • Moran C.
        • Azziz R.
        • Weintrob N.
        • et al.
        Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia.
        J Clin Endocrinol Metab. 2006; 91: 3451
        • Bidet M.
        • Bellanné-Chantelot C.
        • Galand-Portier M.B.
        • et al.
        Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 2010; 95: 1182
        • Huerta R.
        • Dewailly D.
        • Decanter C.
        • et al.
        Adrenocortical hyperresponsivity to adrenocorticotropic hormone: a mechanism favoring the normal production of cortisol in 21-hydroxylase-deficient nonclassic adrenal hyperplasia.
        Fertil Steril. 2000; 74: 329
        • Lobo R.A.
        • Goebelsmann U.
        Adult manifestation of congenital adrenal hyperplasia due to incomplete 21-hydroxylase deficiency mimicking polycystic ovarian disease.
        Am J Obstet Gynecol. 1980; 138: 720
        • Pall M.
        • Azziz R.
        • Beires J.
        • et al.
        The phenotype of hirsute women: a comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia.
        Fertil Steril. 2010; 94: 684
        • Escobar-Morreale H.F.
        • Sanchón R.
        • San Millán J.L.
        A prospective study of the prevalence of nonclassical congenital adrenal hyperplasia among women presenting with hyperandrogenic symptoms and signs.
        J Clin Endocrinol Metab. 2008; 93: 527
        • Pignatelli D.
        Non-classic adrenal hyperplasia due to the deficiency of 21-hydroxylase and its relation to polycystic ovarian syndrome.
        Front Horm Res. 2013; 40: 158
        • Oncul M.
        • Sahmay S.
        • Tuten A.
        • et al.
        May AMH levels distinguish LOCAH from PCOS among hirsute women?.
        Eur J Obstet Gynecol Reprod Biol. 2014; 178: 183
        • Nandagopal R.
        • Sinaii N.
        • Avila N.A.
        • et al.
        Phenotypic profiling of parents with cryptic nonclassic congenital adrenal hyperplasia: findings in 145 unrelated families.
        Eur J Endocrinol. 2011; 164: 977
        • Yildiz B.O.
        • Bolour S.
        • Woods K.
        • et al.
        Visually scoring hirsutism.
        Hum Reprod Update. 2010; 16: 51
        • Ko J.H.
        • Huang Y.H.
        • Kuo T.T.
        Hair counts from normal scalp biopsy in Taiwan.
        Dermatol Surg. 2012; 38: 1516
        • Martin K.A.
        • Chang R.J.
        • Ehrmann D.A.
        • et al.
        Evaluation and treatment of hirsutism in premenopausal women: an Endocrine Society Clinical Practice Guideline.
        J Clin Endocrinol Metab. 2008; 93: 1105
        • Zhao X.
        • Ni R.
        • Li L.
        • et al.
        Defining hirsutism in Chinese women: a cross-sectional study.
        Fertil Steril. 2011; 96: 792
        • DeUgarte C.M.
        • Woods K.S.
        • Bartolucci A.A.
        • et al.
        Degree of facial and body terminal hair growth in unselected black and white women: toward a populational definition of hirsutism.
        J Clin Endocrinol Metab. 2006; 91: 1345
        • O’Donovan C.
        • Kusumakar V.
        • Graves G.R.
        • et al.
        Menstrual abnormalities and polycystic ovary syndrome in women taking valproate for bipolar mood disorder.
        J Clin Psychiatry. 2002; 63: 322
        • Nelson-DeGrave V.L.
        • Wickenheisser J.K.
        • Cockrell J.E.
        • et al.
        Valproate potentiates androgen biosynthesis in human ovarian theca cells.
        Endocrinology. 2004; 145: 799
        • Ghizzoni L.
        • Virdis R.
        • Vottero A.
        • et al.
        Pituitary-ovarian responses to leuprolide acetate testing in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 1996; 81: 601
        • Azziz R.
        • Carmina E.
        • Chen Z.
        • et al.
        Polycystic ovary syndrome.
        Nat Rev Dis Primers. 2016; 2: 16057
        • Herbison A.E.
        Control of puberty onset and fertility by gonadotropin-releasing hormone neurons.
        Nat Rev Endocrinol. 2016; 12: 452
        • Zeleznik A.J.
        The physiology of follicle selection.
        Reprod Biol Endocrinol. 2004; 2: 31
        • Nippoldt T.B.
        • Reame N.E.
        • Kelch R.P.
        • et al.
        The roles of estradiol and progesterone in decreasing luteinizing hormone pulse frequency in the luteal phase of the menstrual cycle.
        J Clin Endocrinol Metab. 1989; 69: 67
        • Barnes R.B.
        • Rosenfield R.L.
        • Ehrmann D.A.
        • et al.
        Ovarian hyperandrogenism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women.
        J Clin Endocrinol Metab. 1994; 79: 1328
        • Belgorosky A.
        • Chahin S.
        • Rivarola M.A.
        Elevation of serum luteinizing hormone levels during hydrocortisone treatment in infant girls with 21-hydroxylase deficiency.
        Acta Paediatr. 1996; 85: 1172
        • Roland A.V.
        • Moenter S.M.
        Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models.
        Front Neuroendocrinol. 2014; 35: 494
        • Taylor A.E.
        • McCourt B.
        • Martin K.A.
        • et al.
        Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome.
        J Clin Endocrinol Metab. 1997; 82: 2248
        • McGee W.K.
        • Bishop C.V.
        • Bahar A.
        • et al.
        Elevated androgens during puberty in female rhesus monkeys lead to increased neuronal drive to the reproductive axis: a possible component of polycystic ovary syndrome.
        Hum Reprod. 2012; 27: 531
        • Levin J.H.
        • Carmina E.
        • Lobo R.A.
        Is the inappropriate gonadotropin secretion of patients with polycystic ovary syndrome similar to that of patients with adult-onset congenital adrenal hyperplasia?.
        Fertil Steril. 1991; 56: 635
        • Bachelot A.
        • Chakhtoura Z.
        • Plu-Bureau G.
        • et al.
        Influence of hormonal control on LH pulsatility and secretion in women with classical congenital adrenal hyperplasia.
        Eur J Endocrinol. 2012; 167: 499
        • Soules M.R.
        • Steiner R.A.
        • Clifton D.K.
        • et al.
        Progesterone modulation of pulsatile luteinizing hormone secretion in normal women.
        J Clin Endocrinol Metab. 1984; 58: 378
        • Couzinet B.
        • Young J.
        • Kujas M.
        • et al.
        The antigonadotropic activity of a 19-nor-progesterone derivative is exerted both at the hypothalamic and pituitary levels in women.
        J Clin Endocrinol Metab. 1999; 84: 4191
        • Moenter S.M.
        Leap of faith: does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?.
        Neuroendocrinology. 2015; 102: 256
        • Lucis O.J.
        • Hobkirk R.
        • Hollenberg C.H.
        • et al.
        Polycystic ovaries associated with congenital adrenal hyperplasia.
        Can Med Assoc J. 1966; 94: 1
        • Pache T.D.
        • Chadha S.
        • Gooren L.J.
        • et al.
        Ovarian morphology in long-term androgen-treated female to male transsexuals. A human model for the study of polycystic ovarian syndrome?.
        Histopathology. 1991; 19: 445
        • Sen A.
        • Hammes S.R.
        Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function.
        Mol Endocrinol. 2010; 24: 1393
        • Walters K.A.
        Role of androgens in normal and pathological ovarian function.
        Reproduction. 2015; 149: R193
        • Gleicher N.
        • Weghofer A.
        • Barad D.H.
        The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment?.
        Reprod Biol Endocrinol. 2011; 9: 116
        • Lebbe M.
        • Woodruff T.K.
        Involvement of androgens in ovarian health and disease.
        Mol Hum Reprod. 2013; 19: 828
        • O’Driscoll J.B.
        • Anderson D.C.
        Untreated congenital adrenal hyperplasia presenting with severe androgenic alopecia.
        J R Soc Med. 1993; 86: 229
        • Auchus R.J.
        Steroid assays and endocrinology: best practices for basic scientists.
        Endocrinology. 2014; 155: 2049
        • Krone N.
        • Hughes B.A.
        • Lavery G.G.
        • et al.
        Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS).
        J Steroid Biochem Mol Biol. 2010; 121: 496
        • Witchel S.F.
        • Nayak S.
        • Suda-Hartman M.
        • et al.
        Newborn screening for 21-hydroxylase deficiency: results of CYP21 molecular genetic analysis.
        J Pediatr. 1997; 131: 328
        • Gröschl M.
        • Rauh M.
        • Schmid P.
        • et al.
        Relationship between salivary progesterone, 17-hydroxyprogesterone, and cortisol levels throughout the normal menstrual cycle of healthy postmenarcheal girls.
        Fertil Steril. 2001; 76: 615
        • Speckart P.F.
        • Nicoloff J.T.
        • Bethune J.E.
        Screening for adrenocortical insufficiency with cosyntropin (synthetic ACTH).
        Arch Intern Med. 1971; 128: 761
        • Grinspoon S.K.
        • Biller B.M.
        Clinical review 62: laboratory assessment of adrenal insufficiency.
        J Clin Endocrinol Metab. 1994; 79: 923
        • Trapp C.M.
        • Speiser P.W.
        • Oberfield S.E.
        Congenital adrenal hyperplasia: an update in children.
        Curr Opin Endocrinol Diabetes Obes. 2011; 18: 166
        • Deneux C.
        • Tardy V.
        • Dib A.
        • et al.
        Phenotype-genotype correlation in 56 women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 2001; 86: 207
        • Fiet J.
        • Gueux B.
        • Gourmelen M.
        • et al.
        Comparison of basal and adrenocorticotropin-stimulated plasma 21-deoxycortisol and 17-hydroxyprogesterone values as biological markers of late-onset adrenal hyperplasia.
        J Clin Endocrinol Metab. 1988; 66: 659
        • Stikkelbroeck N.M.
        • Hoefsloot L.H.
        • de Wijs I.J.
        • et al.
        CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations.
        J Clin Endocrinol Metab. 2003; 88: 3852
        • Xu Z.
        • Chen W.
        • Merke D.P.
        • et al.
        Comprehensive mutation analysis of the CYP21A2 gene: an efficient multistep approach to the molecular diagnosis of congenital adrenal hyperplasia.
        J Mol Diagn. 2013; 15: 745
        • Nordenström A.
        • Thilén A.
        • Hagenfeldt L.
        • et al.
        Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 1999; 84: 1505
        • New M.I.
        • Tong Y.K.
        • Yuen T.
        • et al.
        Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma.
        J Clin Endocrinol Metab. 2014; 99: E1022
        • Witchel S.F.
        • Lee P.A.
        Identification of heterozygotic carriers of 21-hydroxylase deficiency: sensitivity of ACTH stimulation tests.
        Am J Med Genet. 1998; 76: 337
        • Pang S.
        • Hotchkiss J.
        • Drash A.L.
        • et al.
        Microfilter paper method for 17 alpha-hydroxyprogesterone radioimmunoassay: its application for rapid screening for congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 1977; 45: 1003
        • Heather N.L.
        • Seneviratne S.N.
        • Webster D.
        • et al.
        Newborn screening for congenital adrenal hyperplasia in New Zealand, 1994-2013.
        J Clin Endocrinol Metab. 2015; 100: 1002
        • Hayashi G.Y.
        • Carvalho D.F.
        • de Miranda M.C.
        • et al.
        Neonatal 17-hydroxyprogesterone levels adjusted according to age at sample collection and birthweight improve the efficacy of congenital adrenal hyperplasia newborn screening.
        Clin Endocrinol (Oxf). 2017; 86: 480
        • Kamrath C.
        • Hartmann M.F.
        • Boettcher C.
        • et al.
        Reduced activity of 11β-hydroxylase accounts for elevated 17α-hydroxyprogesterone in preterms.
        J Pediatr. 2014; 165: 280
        • Gidlöf S.
        • Falhammar H.
        • Thilén A.
        • et al.
        One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study.
        Lancet Diabetes Endocrinol. 2013; 1: 35
        • Sarafoglou K.
        • Banks K.
        • Kyllo J.
        • et al.
        Cases of congenital adrenal hyperplasia missed by newborn screening in Minnesota.
        JAMA. 2012; 307: 2371
        • Varness T.S.
        • Allen D.B.
        • Hoffman G.L.
        Newborn screening for congenital adrenal hyperplasia has reduced sensitivity in girls.
        J Pediatr. 2005; 147: 493
        • Sarafoglou K.
        • Banks K.
        • Gaviglio A.
        • et al.
        Comparison of one-tier and two-tier newborn screening metrics for congenital adrenal hyperplasia.
        Pediatrics. 2012; 130: e1261
        • Chan C.L.
        • McFann K.
        • Taylor L.
        • et al.
        Congenital adrenal hyperplasia and the second newborn screen.
        J Pediatr. 2013; 163: 109
      1. NNSGRC. National Newborn Screening and Global Resource Center. Available at: http://genes-r-us.uthscsa.edu/. Accessed May 30, 2011.

      2. Carmina E, Dewailly D, Escobar-Morreale HF, et al: Non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency revisited: an update with a special focus on adolescent and adult women. Hum Reproduction Update, in press.

        • Witchel S.F.
        The medical home concept and congenital adrenal hyperplasia: a comfortable habitat!.
        Int J Pediatr Endocrinol. 2010; 2010: 561526
        • Azziz R.
        • Slayden S.M.
        The 21-hydroxylase-deficient adrenal hyperplasias: more than ACTH oversecretion.
        J Soc Gynecol Investig. 1996; 3: 297
        • Rezvani I.
        • Garibaldi L.R.
        • Digeorge A.M.
        • et al.
        Disproportionate suppression of dehydroepiandrosterone sulfate (DHEAS) in treated patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        Pediatr Res. 1983; 17: 131
        • Muthusamy K.
        • Elamin M.B.
        • Smushkin G.
        • et al.
        Clinical review: adult height in patients with congenital adrenal hyperplasia: a systematic review and meta-analysis.
        J Clin Endocrinol Metab. 2010; 95: 4161
        • Auchus R.J.
        Management considerations for the adult with congenital adrenal hyperplasia.
        Mol Cell Endocrinol. 2015; 408: 190
        • Stoupa A.
        • González-Briceño L.
        • Pinto G.
        • et al.
        Inadequate cortisol response to the tetracosactide (Synacthen®) test in non-classic congenital adrenal hyperplasia: an exception to the rule?.
        Horm Res Paediatr. 2015; 83: 262
        • Hindmarsh P.C.
        • Charmandari E.
        Variation in absorption and half-life of hydrocortisone influence plasma cortisol concentrations.
        Clin Endocrinol (Oxf). 2015; 82: 557
        • Mallappa A.
        • Sinaii N.
        • Kumar P.
        • et al.
        A phase 2 study of Chronocort, a modified-release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 2015; 100: 1137
        • Hindmarsh P.C.
        The child with difficult to control congenital adrenal hyperplasia: is there a place for continuous subcutaneous hydrocortisone therapy.
        Clin Endocrinol (Oxf). 2014; 81: 15
        • Auchus R.J.
        • Buschur E.O.
        • Chang A.Y.
        • et al.
        Abiraterone acetate to lower androgens in women with classic 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 2014; 99: 2763
        • Charmandari E.
        • Hindmarsh P.C.
        • Johnston A.
        • et al.
        Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: alterations in cortisol pharmacokinetics at puberty.
        J Clin Endocrinol Metab. 2001; 86: 2701
        • Charmandari E.
        • Brook C.G.
        • Hindmarsh P.C.
        Classic congenital adrenal hyperplasia and puberty.
        Eur J Endocrinol. 2004; 151: U77
        • Amies Oelschlager A.M.
        • Muscarella M.
        • Gomez-Lobo V.
        Transition to Adult Care in Persons With Disorders of Sexual Development: The Role of the gynecologist.
        Obstet Gynecol. 2015; 126: 845
        • Engberg H.
        • Möller A.
        • Hagenfeldt K.
        • et al.
        The experience of women living with congenital adrenal hyperplasia: impact of the condition and the care given.
        Clin Endocrinol (Oxf). 2016; 85: 21
        • Merke D.P.
        • Poppas D.P.
        Management of adolescents with congenital adrenal hyperplasia.
        Lancet Diabetes Endocrinol. 2013; 1: 341
        • Bell L.E.
        • Bartosh S.M.
        • Davis C.L.
        • et al.
        Adolescent transition to adult care in solid organ transplantation: a consensus conference report.
        Am J Transplant. 2008; 8: 2230
        • Gastaud F.
        • Bouvattier C.
        • Duranteau L.
        • et al.
        Impaired sexual and reproductive outcomes in women with classical forms of congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 2007; 92: 1391
        • Pasterski V.
        • Zucker K.J.
        • Hindmarsh P.C.
        • et al.
        Increased cross-gender identification independent of gender role behavior in girls with congenital adrenal hyperplasia: results from a standardized assessment of 4- to 11-year-old children.
        Arch Sex Behav. 2015; 44: 1363
        • Frisén L.
        • Nordenström A.
        • Falhammar H.
        • et al.
        Gender role behavior, sexuality, and psychosocial adaptation in women with congenital adrenal hyperplasia due to CYP21A2 deficiency.
        J Clin Endocrinol Metab. 2009; 94: 3432
        • Hagenfeldt K.
        • Janson P.O.
        • Holmdahl G.
        • et al.
        Fertility and pregnancy outcome in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        Hum Reprod. 2008; 23: 1607
        • Crouch N.S.
        • Liao L.M.
        • Woodhouse C.R.
        • et al.
        Sexual function and genital sensitivity following feminizing genitoplasty for congenital adrenal hyperplasia.
        J Urol. 2008; 179: 634
        • Nordenskjöld A.
        • Holmdahl G.
        • Frisén L.
        • et al.
        Type of mutation and surgical procedure affect long-term quality of life for women with congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 2008; 93: 380
        • Braga L.H.
        • Pippi Salle J.L.
        Congenital adrenal hyperplasia: a critical appraisal of the evolution of feminizing genitoplasty and the controversies surrounding gender reassignment.
        Eur J Pediatr Surg. 2009; 19: 203
        • Mouriquand P.D.
        • Gorduza D.B.
        • Gay C.L.
        • et al.
        Surgery in disorders of sex development (DSD) with a gender issue: if (why), when, and how?.
        J Pediatr Urol. 2016; 12: 139
        • Khattab A.
        • Yau M.
        • Qamar A.
        • et al.
        Long term outcomes in 46, XX adult patients with congenital adrenal hyperplasia reared as males.
        J Steroid Biochem Mol Biol. 2017; 165: 12
        • Reichman D.E.
        • White P.C.
        • New M.I.
        • et al.
        Fertility in patients with congenital adrenal hyperplasia.
        Fertil Steril. 2014; 101: 301
        • Mulaikal R.M.
        • Migeon C.J.
        • Rock J.A.
        Fertility rates in female patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        N Engl J Med. 1987; 316: 178
        • Casteras A.
        • De Silva P.
        • Rumsby G.
        • et al.
        Reassessing fecundity in women with classical congenital adrenal hyperplasia (CAH): normal pregnancy rate but reduced fertility rate.
        Clin Endocrinol. 2009; 70: 833
        • Bouvattier C.
        • Esterle L.
        • Renoult-Pierre P.
        • et al.
        Clinical outcome, hormonal status, gonadotrope axis, and testicular function in 219 adult men born with classic 21-hydroxylase deficiency. A French national survey.
        J Clin Endocrinol Metab. 2015; 100: 2303
        • King T.F.
        • Lee M.C.
        • Williamson E.E.
        • et al.
        Experience in optimizing fertility outcomes in men with congenital adrenal hyperplasia due to 21 hydroxylase deficiency.
        Clin Endocrinol (Oxf). 2016; 84: 830
        • Labarta E.
        • Martínez-Conejero J.A.
        • Alamá P.
        • et al.
        Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics analysis.
        Hum Reprod. 2011; 26: 1813
        • Witchel S.F.
        Management of CAH during pregnancy: optimizing outcomes.
        Curr Opin Endocrinol Diabetes Obes. 2012; 19: 489
        • Nimkarn S.
        • New M.I.
        Prenatal diagnosis and treatment of congenital adrenal hyperplasia.
        Horm Res. 2007; 67: 53
        • Goto M.
        • Piper Hanley K.
        • Marcos J.
        • et al.
        In humans, early cortisol biosynthesis provides a mechanism to safeguard female sexual development.
        J Clin Invest. 2006; 116: 953
        • Lo J.C.
        • Schwitzgebel V.M.
        • Tyrrell J.B.
        • et al.
        Normal female infants born of mothers with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 1999; 84: 930
        • Carlson A.D.
        • Obeid J.S.
        • Kanellopoulou N.
        • et al.
        Congenital adrenal hyperplasia: update on prenatal diagnosis and treatment.
        J Steroid Biochem Mol Biol. 1999; 69: 19
        • Altarescu G.
        Prevention is the best therapy: the geneticist’s approach.
        Pediatr Endocrinol Rev. 2016; 13: 649
        • New M.I.
        • Carlson A.
        • Obeid J.
        • et al.
        Extensive personal experience: prenatal diagnosis for congenital adrenal hyperplasia in 532 pregnancies.
        J Clin Endocrinol Metab. 2001; 86: 5651
        • Davis E.P.
        • Sandman C.A.
        • Buss C.
        • et al.
        Fetal glucocorticoid exposure is associated with preadolescent brain development.
        Biol Psychiatry. 2013; 74: 647
        • Lajic S.
        • Nordenström A.
        • Hirvikoski T.
        Long-term outcome of prenatal dexamethasone treatment of 21-hydroxylase deficiency.
        Endocr Dev. 2011; 20: 96
        • Wallensteen L.
        • Zimmermann M.
        • Thomsen Sandberg M.
        • et al.
        Sex-dimorphic effects of prenatal treatment with dexamethasone.
        J Clin Endocrinol Metab. 2016; 101: 3838
        • Miller W.L.
        • Witchel S.F.
        Prenatal treatment of congenital adrenal hyperplasia: risks outweigh benefits.
        Am J Obstet Gynecol. 2013; 208: 354
        • Peffer M.E.
        • Zhang J.Y.
        • Umfrey L.
        • et al.
        Minireview: the impact of antenatal therapeutic synthetic glucocorticoids on the developing fetal brain.
        Mol Endocrinol. 2015; 29: 658
        • Speiser P.W.
        • Azziz R.
        • Baskin L.S.
        • et al.
        Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline.
        J Clin Endocrinol Metab. 2010; 95: 4133
        • Arlt W.
        • Willis D.S.
        • Wild S.H.
        • et al.
        United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (CaHASE). Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients.
        J Clin Endocrinol Metab. 2010; 95: 5110
        • Finkielstain G.P.
        • Kim M.S.
        • Sinaii N.
        • et al.
        Clinical characteristics of a cohort of 244 patients with congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 2012; 97: 4429
        • Krone N.
        • Rose I.T.
        • Willis D.S.
        • et al.
        • United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE)
        Genotype-phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE) cohort.
        J Clin Endocrinol Metab. 2013; 98: E346
        • Falhammar H.
        • Filipsson H.
        • Holmdahl G.
        • et al.
        Metabolic profile and body composition in adult women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 2007; 92: 110
        • Falhammar H.
        • Filipsson Nyström H.
        • Wedell A.
        • et al.
        Cardiovascular risk, metabolic profile, and body composition in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.
        Eur J Endocrinol. 2011; 164: 285
        • Akyürek N.
        • Atabek M.E.
        • Eklioğlu B.S.
        • et al.
        Ambulatory blood pressure and subclinical cardiovascular disease in patients with congenital adrenal hyperplasia: a preliminary report.
        J Clin Res Pediatr Endocrinol. 2015; 7: 13
        • Bachelot A.
        • Golmard J.L.
        • Dulon J.
        • et al.
        Determining clinical and biological indicators for health outcomes in adult patients with childhood onset of congenital adrenal hyperplasia.
        Eur J Endocrinol. 2015; 173: 175
        • Engberg H.
        • Butwicka A.
        • Nordenström A.
        • et al.
        Congenital adrenal hyperplasia and risk for psychiatric disorders in girls and women born between 1915 and 2010: a total population study.
        Psychoneuroendocrinology. 2015; 60: 195
        • Pescovitz O.H.
        • Comite F.
        • Cassorla F.
        • et al.
        True precocious puberty complicating congenital adrenal hyperplasia: treatment with a luteinizing hormone-releasing hormone analog.
        J Clin Endocrinol Metab. 1984; 58: 857
        • Dacou-Voutetakis C.
        • Karidis N.
        Congenital adrenal hyperplasia complicated by central precocious puberty: treatment with LHRH-agonist analogue.
        Ann N Y Acad Sci. 1993; 687: 250
        • Güven A.
        • Nurcan Cebeci A.
        • Hancili S.
        Gonadotropin releasing hormone analog treatment in children with congenital adrenal hyperplasia complicated by central precocious puberty.
        Hormones (Athens). 2015; 14: 265
        • Canalis E.
        • Mazziotti G.
        • Giustina A.
        • et al.
        Glucocorticoid-induced osteoporosis: pathophysiology and therapy.
        Osteoporos Int. 2007; 18: 1319
        • Ventura A.
        • Brunetti G.
        • Colucci S.
        • et al.
        Glucocorticoid-induced osteoporosis in children with 21-hydroxylase deficiency.
        Biomed Res Int. 2013; 2013: 250462
        • Falhammar H.
        • Filipsson Nyström H.
        • Wedell A.
        • et al.
        Bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia.
        Eur J Endocrinol. 2013; 168: 331
        • Zemel B.S.
        • Leonard M.B.
        • Kelly A.
        • et al.
        Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children.
        J Clin Endocrinol Metab. 2010; 95: 1265
        • Kim M.S.
        • Ryabets-Lienhard A.
        • Bali B.
        • et al.
        Decreased adrenomedullary function in infants with classical congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 2014; 99: E1597
        • Claahsen-van der Grinten H.L.
        • Dehzad F.
        • Kamphuis-van Ulzen K.
        • et al.
        Increased prevalence of testicular adrenal rest tumours during adolescence in congenital adrenal hyperplasia.
        Horm Res Paediatr. 2014; 82: 238
        • Falhammar H.
        • Nyström H.F.
        • Ekström U.
        • et al.
        Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia.
        Eur J Endocrinol. 2012; 166: 441
        • Reisch N.
        • Rottenkolber M.
        • Greifenstein A.
        • et al.
        Testicular adrenal rest tumors develop independently of long-term disease control: a longitudinal analysis of 50 adult men with congenital adrenal hyperplasia due to classic 21-hydroxylase deficiency.
        J Clin Endocrinol Metab. 2013; 98: E1820
        • Chen H.D.
        • Huang L.E.
        • Zhong Z.H.
        • et al.
        Ovarian adrenal rest tumors undetected by imaging studies and identified at surgery in three females with congenital adrenal hyperplasia unresponsive to increased hormone therapy dosage.
        Endocr Pathol. 2017; 28: 146
        • McGeoch S.C.
        • Olson S.
        • Krukowski Z.H.
        • et al.
        Giant bilateral myelolipomas in a man with congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 2012; 97: 343
        • Dhir V.
        • Ivison H.E.
        • Krone N.
        • et al.
        Differential inhibition of CYP17A1 and CYP21A2 activities by the P450 oxidoreductase mutant A287P.
        Mol Endocrinol. 2007; 21: 1958
        • Idkowiak J.
        • O’Riordan S.
        • Reisch N.
        • et al.
        Pubertal presentation in seven patients with congenital adrenal hyperplasia due to P450 oxidoreductase deficiency.
        J Clin Endocrinol Metab. 2011; 96: E453
        • Krone N.
        • Reisch N.
        • Idkowiak J.
        • et al.
        Genotype-phenotype analysis in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency.
        J Clin Endocrinol Metab. 2012; 97: E257
        • Hershkovitz E.
        • Parvari R.
        • Wudy S.A.
        • et al.
        Homozygous mutation G539R in the gene for P450 oxidoreductase in a family previously diagnosed as having 17,20-lyase deficiency.
        J Clin Endocrinol Metab. 2008; 93: 3584
        • Shackleton C.
        • Marcos J.
        • Malunowicz E.M.
        • et al.
        Biochemical diagnosis of Antley-Bixler syndrome by steroid analysis.
        Am J Med Genet. 2004; 128A: 223
        • Sahakitrungruang T.
        • Huang N.
        • Tee M.K.
        • et al.
        Clinical, genetic, and enzymatic characterization of P450 oxidoreductase deficiency in four patients.
        J Clin Endocrinol Metab. 2009; 94: 4992
        • Miller W.L.
        • Auchus R.J.
        The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders.
        Endocr Rev. 2011; 32: 81
        • Mooij C.F.
        • Parajes S.
        • Rose I.T.
        • et al.
        Characterization of the molecular genetic pathology in patients with 11β-hydroxylase deficiency.
        Clin Endocrinol (Oxf). 2015; 83: 629
        • Khoury K.
        • Barbar E.
        • Ainmelk Y.
        • et al.
        Thirty-eight-year follow-up of two sibling lipoid congenital adrenal hyperplasia patients due to homozygous steroidogenic acute regulatory (STARD1) protein mutation. Molecular structure and modeling of the STARD1 L275P mutation.
        Front Neurosci. 2016; 10: 527
        • Baker B.Y.
        • Lin L.
        • Kim C.J.
        • et al.
        Nonclassic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia.
        J Clin Endocrinol Metab. 2006; 91: 4781
        • Tee M.K.
        • Abramsohn M.
        • Loewenthal N.
        • et al.
        Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc.
        J Clin Endocrinol Metab. 2013; 98: 713
        • Carvalho L.C.
        • Brito V.N.
        • Martin R.M.
        • et al.
        Clinical, hormonal, ovarian, and genetic aspects of 46,XX patients with congenital adrenal hyperplasia due to CYP17A1 defects.
        Fertil Steril. 2016; 105: 1612
        • Jones C.M.
        • Mallappa A.
        • Reisch N.
        • et al.
        Modified release and conventional glucocorticoids and diurnal androgen excretion in congenital adrenal hyperplasia.
        J Clin Endocrinol Metab. 2017; 102: 1797
        • Yildiz B.O.
        • Bolour S.
        • Woods K.
        • et al.
        Visually scoring hirsutism.
        Hum Reprod Update. 2010; 16: 51